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A version of the direct method of boundary integral equations is considered which leads to systems of 

singular integral equations of the second kind for solving all the main types of boundary value problems of 

the theory of elasticity. Media with an arbitrary elastic anisotropy are discussed. 

SINGULAR integral equations of the second kind in the direct method of boundary integral equations 
are obtained when solving the second boundary value problem with surface stresses specified on the 
boundary &l of the main region, if we write the Somigliana identity for an [l] 

(‘/, + S’Nu,W) = J-J- t,W) EN - Y’) 4” (0.1) 

Here u. and tc, are the values of the surface strains and stresses, respectively, E is the fundamental 
Kelvin solution (the Kelvin-Boussinesq solution for the plane case), I is the unit diagonal matrix 
and S is the matrix of the singular operator obtained by contracting the potential of a double layer 
on aa. In the case of the first boundary value problem relation (0.1) leads to an integral equation of 
the first kind (in te) with a completely continuous kernel E. Taking into account the fact that this 
problem is ill-posed, it is necessary to use regularization methods to obtain stable solutions 
numerically. Similar problems arise when solving mixed boundary value problems. Direct versions 
of the method of boundary integral equations are also possible when solving plane problems of the 
theory of elasticity using complex potentials [2]. 

To obtain equations of the second kind in direct versions of boundary integral equations when 
solving the first boundary value problem it is natural to act with the stress operator on both sides of 
the Somigliana identity. Then 

(‘4, +S%t,,)(x’)= G,(U,)(X’) (0.2) 

G,,(U,)(X’) = lim 
***X’ 

T(v,, . a,“) aA u,(y') . T(v,,, a,‘) E(x’ - y’) dy’ (0.3) 

The limits on the left-hand side of (0.3) are calculated along non-tangential directions to Xl. 
Equation (0.2) is an equation of the second kind in to, but the operator Go turns out to be 
supersingular. Similar supersingular operators also arise when solving mixed boundary value 
problems. The properties of these operators have not yet been investigated from the computational 
point of view [3]. 

Below we develop a version of the direct method which leads to equations of the second kind 
similar to (0.2) for all main types of boundary value problems of the theory of elasticity. It is shown 
that the operator Go can be represented in the form of a composition of an integral operator with a 
weak singularity and a Beltrami-Laplace operator. This representation enables us to eliminate the 
neighbourhoods o, of the points containing non-integrable components of the supersingular 
integrals with an error O[mes(o,)]. This in turn enables us to extend existing software intended for 
evaluating singular integrals and integrals with a weak singularity to supersingular integrals of the 
form considered. 
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1. FUNDAMENTAL RELATIONS 

Consider a uniform anisotropic elastic medium, the equilibrium equations of which have the 
following form 

A(ai) u s -divC . . (vu) (1.1) 

where u is the displacement vector and C is a fourth-order strictly elliptic elasticity tensor 

(n @0..C..([S77)>0, v t),EER3, n,[fO (1.2) 

We will assume that the medium investigated is hyperelastic: this leads to symmetry of the tensor 
C with respect to the outer pairs of indices: Cm”” = C”““. Condition (1.2) ensures that the matrix 
symbol A” 

A”(~)=(Zn)*~C~ (1.3) 

obtained by applying a Fourier transformation 

f”(t)= J f(x) expC_ 2ni x . .$) dx, fE L2 (R3) 

to Eq. (l.l), is elliptic. 
Using the symbol A” it is easy to construct the inverse symbol E”, which is the Fourier- 

transformed fundamental solution 

E”(.$)= Ax(0ldetx (0 (1.4) 

where G is the matrix of the cofactors of the symbol A”. Formula (1.4) shows that the symbol E” is 
elliptic, real-analytic everywhere in RTO and homogeneous with respect to 151 of degree -2. A 
Fourier inversion of expression (1.4) in the general case of anisotropy can only be carried out 
numerically [4]. 

Support fi is a bounded singly-connected region in R3 with boundary ati, which is an embedded 
compact C”,S submanifold with m 2 1, cr>O in R3. On the surface an we are given the operator of 
the boundary conditions 

B(u, a,) u = (Ma U + N . T(v, a,) u)lan = g 

T(v,a,)u=u.C.sym(vu) 
(1.5) 

where M and N are square matrices, T is the surface-stress operator and v is the vector of the unit 
normal to 80. 

The operator B enables us to describe the different types of boundary conditions in the theory of 
elasticity by a single analytic expression. In particular, when M = I and N = 0, where I is the unit 
diagonal matrix, this condition is the first boundary value problem; when M = 0 and N = 1, this is 
the condition of the second boundary value problem; when M = v@i~, N = I - v@ v this is the 
condition of the third boundary value problem (the Hadamard problem), when the normal 
component of the displacement vector and the shear stresses are given on the boundary; when 
M = I- v@ Y, N = v@ v we obtain the fourth boundary value problem. Other types of boundary 
conditions can be specified in a similar way. 

2. BOUNDARY OPERATORS OF THE DIRECT METHOD 

We will introduce the following factors 

g=M.u,,+N.t,,, f=N.u,,+M.t,, (2.1) 

It is obvious that for boundary value problems 1-4 the vectors f and g define the known and 
unknown vector densities on 80, respectively. 

By writing the Somigliana identity for points of the boundary surface an and calculating the 
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stresses on the boundary we obtain the following analogues of Eqs (0.1) and (0.2) for solving 
boundary value problems 1-4 

K 09(x’) = G (g)(x’) (2.2) 

K=(1/2+Sr)~N+(1/2+S*)~M=~/2+S’~N+S*~M (2.3) 

where K is the singular matrix operator. The kernel of the integro-differential operator G has the 
form 

G(x’,y’)=E(x’-y’).N+Go(x’,y’).M 

In turn, the kernel of the supersingular operator Go is defined by (0.3). 
An analysis of relation (2.3) shows that the following holds. 

(2.4) 

Proposition 1. The operator K is a standard matrix pseudo-differential operator of class S” on aa. 

Definition. The spectrum of the operator X will be called a set of (complex) numbers A, for which 
the operator AI-X is not invertible in the class of continuous endomorphisms which act in the 
corresponding functional space. 

We will denote by HS(aR, R3) the Sobolev-Slobodetskii space of index ~20. If dfi is a manifold 
of class C”,” and s < 2m + a, the spaces H” are correctly defined on &I. Henceforth, this condition, 

imposed on the index s, will be assumed to be satisfied. 

Lemma 1. (A) The spectrum of the operator S is discrete. (B) The spectrum of S lies in the circle 
) h ( d %. (C) The point h = --!A belongs to the spectrum S and is a simple pole of the resolvent. (D) 
The spectral subspace E_i12 is six-dimensional and contains a contraction on aR of the rigid 
displacements: c + W .x’, where W is an arbitrary skew-symmetric tensor. 

The lemma has been proved both in the isotropic case [5, 61 and in the anisotropic case [7]. 
The following proposition follows directly from the assertion of Lemma l(C). 

Proposition 2. The operator K is invertible in the factor-space H”(dn, R3)\E_1,2. 
Hence, in H”(dR, R3)\E_1,2 the equation of the kind (2.2) is uniquely solvable 

f(x’) = K -’ 0 G(g)(x’) (2.5) 

Here it is assumed that the right-hand side G(g) (x’) belongs to the stated factor-space. 
The inverse operator K-i can be constructed using a Neumann series 

K-’ = 2 ; (-2s’. N -2s’ . M)” (2.6) n=O 

In view of the statements of Lemmas l(B) and (C), the Neumann series (2.6) is absolutely 
convergent in H’(dO, R3)\E_l,2. A similar method of constructing the inverse operator in the 
anisotropic case for boundary value problems 1 and 2 has been indicated previously [8]. 

Note I. When solving the internal and external boundary value problems l-4 by direct boundary integral 
equation methods [5, 61, the corresponding root spaces turn out to be different, and generally speaking, 
distinguishable from E-t12. This is explained by the fact that in the above methods the boundary operator may 
also contain operators of the form-U2 + S, where the point A = % does not belong to the spectrum S. 

3. THE PROPERTIES OF THE OPERATOR Go 

The main result of this section is proving the possibility of eliminating regions containing 
non-integrable singularities of supersingular integrals. 

The direct use of (0.3) for a supersingular kernel Go is inconvenient since it requires us to 
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calculate the limits in non-tangential directions. For the purposes of this section, more convenient 
formulae are obtained if we transfer to an investigation of the principal symbol Go 

C&W, 5’) = x!iy, o JT”@,*, 5). E”(t). T”‘(v,,, ,$)exp(-2ni$‘x”)dx” 

$=,$-(~.ux,)v,~, [“=&v,,, X’EaR (3.1) 

The sign - here and henceforth denotes a Fourier transformation with respect to the variable 
lying in the cotangent stratification T*aLR. Henceforth the dependence on x’ will be omitted in the 
notation of the symbol G;. 

The improper integral in (3.1) can be represented in a simpler form if we use the obvious 
equations 

T”(v,[)=- 
A”(5)-(27&‘CC; 

T”‘(Y,[)=- 
A”(t)- (279% c. c;’ 

znif“’ 
, 

2ni f” (3.2) 

and bear in mind that A” (5) 0E” (5) = I. Taking relations (3.2) into account we have 

G&/)= -sym[(2ni)([’ U C. 5“). Hr”E”($, 0). ([’ . C. u) t 

+ (2ni)‘($ . C s u). E-Q!‘, 0). (t’. C . v) + (2ni)‘(& . C . 5’) . E-(,!/, 0) . (v. C . V) t 

t (2ni)($ . C . v) . a, 1, E-(.$‘, 0) . (v . C . u)] 

- E”(t) 
Hr”E”($, 0) = VS. J - d[“, 

-- 2ni[” 
E-(5’, 0) = 7 E”(t)d t” 

--oD 

(3.3) 

(3.4) 

a,l*E-(g’, 0)= VP. ; 2niE”(g)f”d$’ 
-0D 

Here Z+E”(<, 0) is the value at zero of the Hilbert transformation of E”(t) with respect to [‘I, 
while E-(e) 0) is the value of the partial Fourier transformation with respect to x’ at x” = 0. We can 
determine &E-(~, 0) in a similar way. 

It is important that the integrals (3.4) are correctly defined for any Q # 0 since the symbol E”, 
considered as a function of a single parameter t”, is infinitely differentiable and belongs to the class 
LP,pZl. 

A direct analysis of (3.3) shows that the following assertion holds. 

Proposition 3. (A) The matric symbol Go is a symbol of the class Sr (positively homogeneous of 
degree 1). (B) The symbol Go is positively semi-defined for any 5’ f 0 

a.G-($).a>O, V aER3, a#0 

Taking Proposition 3 into account we can write 

G;(,$‘) = - (2n)‘A”(5’) V--(5’) (3.5) 

where V” E S-’ is the principal symbol of the integral operator with a weak (integrable) singularity 
on LJR, while A- is the principal symbol of the Beltrami-Laplace operator on ~90. An inverse 
Fourier transformation applied to (3.5) gives 

G,,=VoA+r (3.6) 

where r is an operator of class S” on &l. 

Proposition 4. The calculation of the supersingular integral with kernel Go of the function 
gEW(cXl, R3) with the elimination of the neighbourhood of the pole W, gives an error 
o(mes(4). 

Proof The right-hand side (0.3) shows that GO(g)(x’) = GO(g- &,)(x’), where &-, is a constant vector field 
on XL, equal to the value of g at the point x’. Hence, the principal part of the operator r in (3.6) is a 
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Calderon-Zygmund operator, and does not contain &components. Since g(y) - &;, ( ,,,+ = 0, in the assump- 
tion that the field g is locally constant in the neighbourhood of x’, the supersingular integral Gs(g-g,) turns 
out to be correctly defined as an integral in the sense of the principal value. 

Hence, to determine the values of the supersingular operator Go(g) one can use standard 
programs for evaluating singular integrals with a weak singularity based on ignoring regions 
containing non-integrable singularities. 

4. DETERMINATION OF THE KERNEL Go BY THE METHOD OF MULTIPOLAR 

EXPANSIONS 

The method of analysing the operator Go used in the previous section, based on an investigation 
of the corresponding symbol, is not very convenient for constructing this operator in practice, 
particularly for problems with an arbitrary elastic anisotropy. 

Below, we construct the kernel of the operator Go by the method of multipole expansions. This 
method was used to establish fundamental solutions of the equations of equilibrium from their 
symbols in [4] and to establish operators [9] similar to those considered below. 

We define the symbol 2: as follows: 

Z,‘(t)= C . .[e E”(t)@ Ea. C (4.1) 

By convolution with the vectors of the unit normals v,,, v,,,, x’, y’ E 8fi from (4.1) we obtain the 
amplitude 

G,‘(#)= TV&#, [). E”(t). T”‘(v,A 4) = v,’ . Zi.G)- ~,a' (4.2) 

It in turn generates the symbol G- ,, , which was investigated in the previous section. 
We will consider the expansion of the symbol Zg which is positively homogeneous of degree zero 

in the multipole series (the series in surface spherical harmonics) 

(4.3) 

where YP, are spherical harmonics, while the tensor coefficients iPk are found by integration over 
the sphere S of unit radius in R3. 

The fact that in expansion (4.3) there are only harmonics of even power, is due to the positive 
homogeneity of the symbol Zi. An inverse Fourier transformation of (4.3) gives [lo] 

z;(x) = 73 
r((p + 3)/2) 2p+i YQ (x’) 2 z&k - 

p=2,4 ) . . . rip/a k=l lx13 
(4.4) 

In this formula we have omitted the term corresponding to the spherical harmonic of zero degree (a 
constant) in (4.3), which, in the inverse Fourier transformation, would lead to the occurrence of a 
S-like component. The latter, as can easily be seen, disappears for contractions on a manifold of less 
dimensions and, in particular, on dR. 

Hence, series (4.4) defines the supersingular kernel Zb on XI. Carrying out the convolution with 
the vectors v,,, v,,, , we obtain the required kernel of the operator Go. The fundamental problems of 
the convergence and the numerical realization of the method of multipole expansions were 
considered in [4]. 

Note 2. In addition to multipole expansions, one can also establish the operator Zb from the corresponding 
symbol for arbitrary anisotropy of the medium using a Radon transformation, for the class of problems 
considered which is a disintegration of Lebesgue measure over planes in an inverse Fourier transformation. 
This method is also called the method of expansion in plane waves [ll]. Numerical experiments on the 
inversion of symbols of the fundamental solutions have shown [12] that, in the general case of anisotropy, this 
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method involves considerable computer costs and, for effective realization, requires additional approximations 
on spheres-essentially expansions of the characteristics or symbols E” in multipoles. Similar complica- 
tions arise in the Radon method when establishing the operator Zb . 

The author thanks R. V. Gol’dshtein for suggesting the problem and Yu. M. Mamedov for 

discussing the results. 
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